Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Coordinated MDP Approach to Multi-Agent Planning for Resource Allocation, with Applications to Healthcare (1407.1584v1)

Published 7 Jul 2014 in cs.AI and cs.MA

Abstract: This paper considers a novel approach to scalable multiagent resource allocation in dynamic settings. We propose an approximate solution in which each resource consumer is represented by an independent MDP-based agent that models expected utility using an average model of its expected access to resources given only limited information about all other agents. A global auction-based mechanism is proposed for allocations based on expected regret. We assume truthful bidding and a cooperative coordination mechanism, as we are considering healthcare scenarios. We illustrate the performance of our coordinated MDP approach against a Monte-Carlo based planning algorithm intended for large-scale applications, as well as other approaches suitable for allocating medical resources. The evaluations show that the global utility value across all consumer agents is closer to optimal when using our algorithms under certain time constraints, with low computational cost. As such, we offer a promising approach for addressing complex resource allocation problems that arise in healthcare settings.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.