Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 70 tok/s
Gemini 2.5 Flash 169 tok/s Pro
Gemini 2.5 Pro 47 tok/s Pro
Kimi K2 194 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

The Inverse Fast Multipole Method (1407.1572v1)

Published 7 Jul 2014 in math.NA and cs.NA

Abstract: This article introduces a new fast direct solver for linear systems arising out of wide range of applications, integral equations, multivariate statistics, radial basis interpolation, etc., to name a few. \emph{The highlight of this new fast direct solver is that the solver scales linearly in the number of unknowns in all dimensions.} The solver, termed as Inverse Fast Multipole Method (abbreviated as IFMM), works on the same data-structure as the Fast Multipole Method (abbreviated as FMM). More generally, the solver can be immediately extended to the class of hierarchical matrices, denoted as $\mathcal{H}2$ matrices with strong admissibility criteria (weak low-rank structure), i.e., \emph{the interaction between neighboring cluster of particles is full-rank whereas the interaction between particles corresponding to well-separated clusters can be efficiently represented as a low-rank matrix}. The algorithm departs from existing approaches in the fact that throughout the algorithm the interaction corresponding to neighboring clusters are always treated as full-rank interactions. Our approach relies on two major ideas: (i) The $N \times N$ matrix arising out of FMM (from now on termed as FMM matrix) can be represented as an extended sparser matrix of size $M \times M$, where $M \approx 3N$. (ii) While solving the larger extended sparser matrix, \emph{the fill-in's that arise in the matrix blocks corresponding to well-separated clusters are hierarchically compressed}. The ordering of the equations and the unknowns in the extended sparser matrix is strongly related to the local and multipole coefficients in the FMM~\cite{greengard1987fast} and \emph{the order of elimination is different from the usual nested dissection approach}. Numerical benchmarks on $2$D manifold confirm the linear scaling of the algorithm.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.