Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Bit-Parallel Russian Dolls Search for a Maximum Cardinality Clique in a Graph (1407.1209v3)

Published 4 Jul 2014 in cs.DS

Abstract: Finding the clique of maximum cardinality in an arbitrary graph is an NP-Hard problem that has many applications, which has motivated studies to solve it exactly despite its difficulty. The great majority of algorithms proposed in the literature are based on the Branch and Bound method. In this paper, we propose an exact algorithm for the maximum clique problem based on the Russian Dolls Search method. When compared to Branch and Bound, the main difference of the Russian Dolls method is that the nodes of its search tree correspond to decision subproblems, instead of the optimization subproblems of the Branch and Bound method. In comparison to a first implementation of this Russian Dolls method from the literature, several improvements are presented. Some of them are adaptations of techniques already employed successfully in Branch and Bound algorithms, like the use of approximate coloring for pruning purposes and bit-parallel operations. Two different coloring heuristics are tested: the standard greedy and the greedy with recoloring. Other improvements are directly related to the Russian Dolls scheme: the adoption of recursive calls where each subproblem (doll) is solved itself via the same principles than the Russian Dolls Search and the application of an elimination rule allowing not to generate a significant number of dolls. Results of computational experiments show that the algorithm outperforms the best exact combinatorial algorithms in the literature for the great majority of the dense graphs tested, being more than twice faster in several cases.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.