Papers
Topics
Authors
Recent
2000 character limit reached

Improving Performance of Self-Organising Maps with Distance Metric Learning Method (1407.1201v1)

Published 4 Jul 2014 in cs.LG and cs.NE

Abstract: Self-Organising Maps (SOM) are Artificial Neural Networks used in Pattern Recognition tasks. Their major advantage over other architectures is human readability of a model. However, they often gain poorer accuracy. Mostly used metric in SOM is the Euclidean distance, which is not the best approach to some problems. In this paper, we study an impact of the metric change on the SOM's performance in classification problems. In order to change the metric of the SOM we applied a distance metric learning method, so-called 'Large Margin Nearest Neighbour'. It computes the Mahalanobis matrix, which assures small distance between nearest neighbour points from the same class and separation of points belonging to different classes by large margin. Results are presented on several real data sets, containing for example recognition of written digits, spoken letters or faces.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.