Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Co-Following on Twitter (1407.0791v1)

Published 3 Jul 2014 in cs.SI and physics.soc-ph

Abstract: We present an in-depth study of co-following on Twitter based on the observation that two Twitter users whose followers have similar friends are also similar, even though they might not share any direct links or a single mutual follower. We show how this observation contributes to (i) a better understanding of language-agnostic user classification on Twitter, (ii) eliciting opportunities for Computational Social Science, and (iii) improving online marketing by identifying cross-selling opportunities. We start with a machine learning problem of predicting a user's preference among two alternative choices of Twitter friends. We show that co-following information provides strong signals for diverse classification tasks and that these signals persist even when (i) the most discriminative features are removed and (ii) only relatively "sparse" users with fewer than 152 but more than 43 Twitter friends are considered. Going beyond mere classification performance optimization, we present applications of our methodology to Computational Social Science. Here we confirm stereotypes such as that the country singer Kenny Chesney (@kennychesney) is more popular among @GOP followers, whereas Lady Gaga (@ladygaga) enjoys more support from @TheDemocrats followers. In the domain of marketing we give evidence that celebrity endorsement is reflected in co-following and we demonstrate how our methodology can be used to reveal the audience similarities between Apple and Puma and, less obviously, between Nike and Coca-Cola. Concerning a user's popularity we find a statistically significant connection between having a more "average" followership and having more followers than direct rivals. Interestingly, a \emph{larger} audience also seems to be linked to a \emph{less diverse} audience in terms of their co-following.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.