Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Randomized Block Coordinate Descent for Online and Stochastic Optimization (1407.0107v3)

Published 1 Jul 2014 in cs.LG

Abstract: Two types of low cost-per-iteration gradient descent methods have been extensively studied in parallel. One is online or stochastic gradient descent (OGD/SGD), and the other is randomzied coordinate descent (RBCD). In this paper, we combine the two types of methods together and propose online randomized block coordinate descent (ORBCD). At each iteration, ORBCD only computes the partial gradient of one block coordinate of one mini-batch samples. ORBCD is well suited for the composite minimization problem where one function is the average of the losses of a large number of samples and the other is a simple regularizer defined on high dimensional variables. We show that the iteration complexity of ORBCD has the same order as OGD or SGD. For strongly convex functions, by reducing the variance of stochastic gradients, we show that ORBCD can converge at a geometric rate in expectation, matching the convergence rate of SGD with variance reduction and RBCD.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.