Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Dealing with Zero Density Using Piecewise Phase-type Approximation (1406.7527v1)

Published 29 Jun 2014 in cs.PF

Abstract: Every probability distribution can be approximated up to a given precision by a phase-type distribution, i.e. a distribution encoded by a continuous time Markov chain (CTMC). However, an excessive number of states in the corresponding CTMC is needed for some standard distributions, in particular most distributions with regions of zero density such as uniform or shifted distributions. Addressing this class of distributions, we suggest an alternative representation by CTMC extended with discrete-time transitions. Using discrete-time transitions we split the density function into multiple intervals. Within each interval, we then approximate the density with standard phase-type fitting. We provide an experimental evidence that our method requires only a moderate number of states to approximate such distributions with regions of zero density. Furthermore, the usage of CTMC with discrete-time transitions is supported by a number of techniques for their analysis. Thus, our results promise an efficient approach to the transient analysis of a class of non-Markovian models.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.