Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Use of Different Feature Extraction Methods for Linear and Non Linear kernels (1406.7314v1)

Published 27 Jun 2014 in cs.CL and cs.LG

Abstract: The speech feature extraction has been a key focus in robust speech recognition research; it significantly affects the recognition performance. In this paper, we first study a set of different features extraction methods such as linear predictive coding (LPC), mel frequency cepstral coefficient (MFCC) and perceptual linear prediction (PLP) with several features normalization techniques like rasta filtering and cepstral mean subtraction (CMS). Based on this, a comparative evaluation of these features is performed on the task of text independent speaker identification using a combination between gaussian mixture models (GMM) and linear and non-linear kernels based on support vector machine (SVM).

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.