Overlapping Community Detection Optimization and Nash Equilibrium (1406.6832v1)
Abstract: Community detection using both graphs and social networks is the focus of many algorithms. Recent methods aimed at optimizing the so-called modularity function proceed by maximizing relations within communities while minimizing inter-community relations. However, given the NP-completeness of the problem, these algorithms are heuristics that do not guarantee an optimum. In this paper, we introduce a new algorithm along with a function that takes an approximate solution and modifies it in order to reach an optimum. This reassignment function is considered a 'potential function' and becomes a necessary condition to asserting that the computed optimum is indeed a Nash Equilibrium. We also use this function to simultaneously show partitioning and overlapping communities, two detection and visualization modes of great value in revealing interesting features of a social network. Our approach is successfully illustrated through several experiments on either real unipartite, multipartite or directed graphs of medium and large-sized datasets.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.