Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Fixed-Parameter Tractability of Token Jumping on Planar Graphs (1406.6567v2)

Published 25 Jun 2014 in cs.DM and cs.DS

Abstract: Suppose that we are given two independent sets $I_0$ and $I_r$ of a graph such that $|I_0| = |I_r|$, and imagine that a token is placed on each vertex in $I_0$. The token jumping problem is to determine whether there exists a sequence of independent sets which transforms $I_0$ into $I_r$ so that each independent set in the sequence results from the previous one by moving exactly one token to another vertex. This problem is known to be PSPACE-complete even for planar graphs of maximum degree three, and W[1]-hard for general graphs when parameterized by the number of tokens. In this paper, we present a fixed-parameter algorithm for the token jumping problem on planar graphs, where the parameter is only the number of tokens. Furthermore, the algorithm can be modified so that it finds a shortest sequence for a yes-instance. The same scheme of the algorithms can be applied to a wider class of graphs, $K_{3,t}$-free graphs for any fixed integer $t \ge 3$, and it yields fixed-parameter algorithms.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.