Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Lower Bound of $2^n$ Conditional Branches for Boolean Satisfiability on Post Machines (1406.6353v1)

Published 24 Jun 2014 in cs.CC

Abstract: We establish a lower bound of $2n$ conditional branches for deciding the satisfiability of the conjunction of any two Boolean formulas from a set called a full representation of Boolean functions of $n$ variables - a set containing a Boolean formula to represent each Boolean function of $n$ variables. The contradiction proof first assumes that there exists a Post machine (Post's Formulation 1) that correctly decides the satisfiability of the conjunction of any two Boolean formulas from such a set by following an execution path that includes fewer than $2n$ conditional branches. By using multiple runs of this Post machine, with one run for each Boolean function of $n$ variables, the proof derives a contradiction by showing that this Post machine is unable to correctly decide the satisfiability of the conjunction of at least one pair of Boolean formulas from a full representation of $n$-variable Boolean functions if the machine executes fewer than $2n$ conditional branches. This lower bound of $2n$ conditional branches holds for any full representation of Boolean functions of $n$ variables, even if a full representation consists solely of minimized Boolean formulas derived by a Boolean minimization method. We discuss why the lower bound fails to hold for satisfiability of certain restricted formulas, such as 2CNF satisfiability, XOR-SAT, and HORN-SAT. We also relate the lower bound to 3CNF satisfiability. The lower bound does not depend on sequentiality of access to the boxes in the symbol space and will hold even if a machine is capable of non-sequential access.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)