Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Bounding Clique-Width via Perfect Graphs (1406.6298v2)

Published 24 Jun 2014 in cs.DM and math.CO

Abstract: Given two graphs $H_1$ and $H_2$, a graph $G$ is $(H_1,H_2)$-free if it contains no subgraph isomorphic to $H_1$ or $H_2$. We continue a recent study into the clique-width of $(H_1,H_2)$-free graphs and present three new classes of $(H_1,H_2)$-free graphs of bounded clique-width and one of unbounded clique-width. The four new graph classes have in common that one of their two forbidden induced subgraphs is the diamond (the graph obtained from a clique on four vertices by deleting one edge). To prove boundedness of clique-width for the first three cases we develop a technique based on bounding clique covering number in combination with reduction to subclasses of perfect graphs. We extend our proof of unboundedness for the fourth case to show that Graph Isomorphism is Graph Isomorphism-complete on the same graph class. We also show the implications of our results for the computational complexity of the Colouring problem restricted to $(H_1,H_2)$-free graphs.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.