Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SPSD Matrix Approximation vis Column Selection: Theories, Algorithms, and Extensions (1406.5675v6)

Published 22 Jun 2014 in cs.LG

Abstract: Symmetric positive semidefinite (SPSD) matrix approximation is an important problem with applications in kernel methods. However, existing SPSD matrix approximation methods such as the Nystr\"om method only have weak error bounds. In this paper we conduct in-depth studies of an SPSD matrix approximation model and establish strong relative-error bounds. We call it the prototype model for it has more efficient and effective extensions, and some of its extensions have high scalability. Though the prototype model itself is not suitable for large-scale data, it is still useful to study its properties, on which the analysis of its extensions relies. This paper offers novel theoretical analysis, efficient algorithms, and a highly accurate extension. First, we establish a lower error bound for the prototype model and improve the error bound of an existing column selection algorithm to match the lower bound. In this way, we obtain the first optimal column selection algorithm for the prototype model. We also prove that the prototype model is exact under certain conditions. Second, we develop a simple column selection algorithm with a provable error bound. Third, we propose a so-called spectral shifting model to make the approximation more accurate when the eigenvalues of the matrix decay slowly, and the improvement is theoretically quantified. The spectral shifting method can also be applied to improve other SPSD matrix approximation models.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.