Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Noise-adaptive Margin-based Active Learning and Lower Bounds under Tsybakov Noise Condition (1406.5383v3)

Published 20 Jun 2014 in stat.ML and cs.LG

Abstract: We present a simple noise-robust margin-based active learning algorithm to find homogeneous (passing the origin) linear separators and analyze its error convergence when labels are corrupted by noise. We show that when the imposed noise satisfies the Tsybakov low noise condition (Mammen, Tsybakov, and others 1999; Tsybakov 2004) the algorithm is able to adapt to unknown level of noise and achieves optimal statistical rate up to poly-logarithmic factors. We also derive lower bounds for margin based active learning algorithms under Tsybakov noise conditions (TNC) for the membership query synthesis scenario (Angluin 1988). Our result implies lower bounds for the stream based selective sampling scenario (Cohn 1990) under TNC for some fairly simple data distributions. Quite surprisingly, we show that the sample complexity cannot be improved even if the underlying data distribution is as simple as the uniform distribution on the unit ball. Our proof involves the construction of a well separated hypothesis set on the d-dimensional unit ball along with carefully designed label distributions for the Tsybakov noise condition. Our analysis might provide insights for other forms of lower bounds as well.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)