Papers
Topics
Authors
Recent
2000 character limit reached

Rows vs Columns for Linear Systems of Equations - Randomized Kaczmarz or Coordinate Descent? (1406.5295v1)

Published 20 Jun 2014 in math.OC, cs.LG, cs.NA, math.NA, and stat.ML

Abstract: This paper is about randomized iterative algorithms for solving a linear system of equations $X \beta = y$ in different settings. Recent interest in the topic was reignited when Strohmer and Vershynin (2009) proved the linear convergence rate of a Randomized Kaczmarz (RK) algorithm that works on the rows of $X$ (data points). Following that, Leventhal and Lewis (2010) proved the linear convergence of a Randomized Coordinate Descent (RCD) algorithm that works on the columns of $X$ (features). The aim of this paper is to simplify our understanding of these two algorithms, establish the direct relationships between them (though RK is often compared to Stochastic Gradient Descent), and examine the algorithmic commonalities or tradeoffs involved with working on rows or columns. We also discuss Kernel Ridge Regression and present a Kaczmarz-style algorithm that works on data points and having the advantage of solving the problem without ever storing or forming the Gram matrix, one of the recognized problems encountered when scaling kernelized methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.