Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Impact of Exponent Parameter Value for the Partition Matrix on the Performance of Fuzzy C Means Algorithm (1406.4007v1)

Published 16 Jun 2014 in cs.CV

Abstract: Soft Clustering plays a very important rule on clustering real world data where a data item contributes to more than one cluster. Fuzzy logic based algorithms are always suitable for performing soft clustering tasks. Fuzzy C Means (FCM) algorithm is a very popular fuzzy logic based algorithm. In case of fuzzy logic based algorithm, the parameter like exponent for the partition matrix that we have to fix for the clustering task plays a very important rule on the performance of the algorithm. In this paper, an experimental analysis is done on FCM algorithm to observe the impact of this parameter on the performance of the algorithm.

Citations (22)

Summary

We haven't generated a summary for this paper yet.