Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

From Stochastic Mixability to Fast Rates (1406.3781v2)

Published 14 Jun 2014 in cs.LG and stat.ML

Abstract: Empirical risk minimization (ERM) is a fundamental learning rule for statistical learning problems where the data is generated according to some unknown distribution $\mathsf{P}$ and returns a hypothesis $f$ chosen from a fixed class $\mathcal{F}$ with small loss $\ell$. In the parametric setting, depending upon $(\ell, \mathcal{F},\mathsf{P})$ ERM can have slow $(1/\sqrt{n})$ or fast $(1/n)$ rates of convergence of the excess risk as a function of the sample size $n$. There exist several results that give sufficient conditions for fast rates in terms of joint properties of $\ell$, $\mathcal{F}$, and $\mathsf{P}$, such as the margin condition and the Bernstein condition. In the non-statistical prediction with expert advice setting, there is an analogous slow and fast rate phenomenon, and it is entirely characterized in terms of the mixability of the loss $\ell$ (there being no role there for $\mathcal{F}$ or $\mathsf{P}$). The notion of stochastic mixability builds a bridge between these two models of learning, reducing to classical mixability in a special case. The present paper presents a direct proof of fast rates for ERM in terms of stochastic mixability of $(\ell,\mathcal{F}, \mathsf{P})$, and in so doing provides new insight into the fast-rates phenomenon. The proof exploits an old result of Kemperman on the solution to the general moment problem. We also show a partial converse that suggests a characterization of fast rates for ERM in terms of stochastic mixability is possible.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube