Papers
Topics
Authors
Recent
Search
2000 character limit reached

Leveraging Personalization To Facilitate Privacy

Published 10 Jun 2014 in cs.SI, cs.CY, and physics.soc-ph | (1406.2398v1)

Abstract: Online social networks have enabled new methods and modalities of collaboration and sharing. These advances bring privacy concerns: online social data is more accessible and persistent and simultaneously less contextualized than traditional social interactions. To allay these concerns, many web services allow users to configure their privacy settings based on a set of multiple-choice questions. We suggest a new paradigm for privacy options. Instead of suggesting the same defaults to each user, services can leverage knowledge of users' traits to recommend a machine-learned prediction of their privacy preferences for Facebook. As a case study, we build and evaluate MyPrivacy, a publicly available web application that suggests personalized privacy settings. An evaluation with 199 users shows that users find the suggestions to be appropriate and private; furthermore, they express intent to implement the recommendations made by MyPrivacy. This supports the proposal to put personalization to work in online communities to promote privacy and security.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.