Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Reducing the Effects of Detrimental Instances (1406.2237v2)

Published 9 Jun 2014 in stat.ML and cs.LG

Abstract: Not all instances in a data set are equally beneficial for inducing a model of the data. Some instances (such as outliers or noise) can be detrimental. However, at least initially, the instances in a data set are generally considered equally in machine learning algorithms. Many current approaches for handling noisy and detrimental instances make a binary decision about whether an instance is detrimental or not. In this paper, we 1) extend this paradigm by weighting the instances on a continuous scale and 2) present a methodology for measuring how detrimental an instance may be for inducing a model of the data. We call our method of identifying and weighting detrimental instances reduced detrimental instance learning (RDIL). We examine RIDL on a set of 54 data sets and 5 learning algorithms and compare RIDL with other weighting and filtering approaches. RDIL is especially useful for learning algorithms where every instance can affect the classification boundary and the training instances are considered individually, such as multilayer perceptrons trained with backpropagation (MLPs). Our results also suggest that a more accurate estimate of which instances are detrimental can have a significant positive impact for handling them.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.