Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Efficient Sparse Clustering of High-Dimensional Non-spherical Gaussian Mixtures (1406.2206v1)

Published 9 Jun 2014 in math.ST, stat.ML, and stat.TH

Abstract: We consider the problem of clustering data points in high dimensions, i.e. when the number of data points may be much smaller than the number of dimensions. Specifically, we consider a Gaussian mixture model (GMM) with non-spherical Gaussian components, where the clusters are distinguished by only a few relevant dimensions. The method we propose is a combination of a recent approach for learning parameters of a Gaussian mixture model and sparse linear discriminant analysis (LDA). In addition to cluster assignments, the method returns an estimate of the set of features relevant for clustering. Our results indicate that the sample complexity of clustering depends on the sparsity of the relevant feature set, while only scaling logarithmically with the ambient dimension. Additionally, we require much milder assumptions than existing work on clustering in high dimensions. In particular, we do not require spherical clusters nor necessitate mean separation along relevant dimensions.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube