Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Decreasing Power of Kernel and Distance based Nonparametric Hypothesis Tests in High Dimensions (1406.2083v2)

Published 9 Jun 2014 in stat.ML, cs.IT, cs.LG, math.IT, math.ST, stat.ME, and stat.TH

Abstract: This paper is about two related decision theoretic problems, nonparametric two-sample testing and independence testing. There is a belief that two recently proposed solutions, based on kernels and distances between pairs of points, behave well in high-dimensional settings. We identify different sources of misconception that give rise to the above belief. Specifically, we differentiate the hardness of estimation of test statistics from the hardness of testing whether these statistics are zero or not, and explicitly discuss a notion of "fair" alternative hypotheses for these problems as dimension increases. We then demonstrate that the power of these tests actually drops polynomially with increasing dimension against fair alternatives. We end with some theoretical insights and shed light on the \textit{median heuristic} for kernel bandwidth selection. Our work advances the current understanding of the power of modern nonparametric hypothesis tests in high dimensions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.