Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Nonparametric Independence Testing for Small Sample Sizes (1406.1922v2)

Published 7 Jun 2014 in stat.ML

Abstract: This paper deals with the problem of nonparametric independence testing, a fundamental decision-theoretic problem that asks if two arbitrary (possibly multivariate) random variables $X,Y$ are independent or not, a question that comes up in many fields like causality and neuroscience. While quantities like correlation of $X,Y$ only test for (univariate) linear independence, natural alternatives like mutual information of $X,Y$ are hard to estimate due to a serious curse of dimensionality. A recent approach, avoiding both issues, estimates norms of an \textit{operator} in Reproducing Kernel Hilbert Spaces (RKHSs). Our main contribution is strong empirical evidence that by employing \textit{shrunk} operators when the sample size is small, one can attain an improvement in power at low false positive rates. We analyze the effects of Stein shrinkage on a popular test statistic called HSIC (Hilbert-Schmidt Independence Criterion). Our observations provide insights into two recently proposed shrinkage estimators, SCOSE and FCOSE - we prove that SCOSE is (essentially) the optimal linear shrinkage method for \textit{estimating} the true operator; however, the non-linearly shrunk FCOSE usually achieves greater improvements in \textit{test power}. This work is important for more powerful nonparametric detection of subtle nonlinear dependencies for small samples.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.