Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Fine-grained Activity Recognition with Holistic and Pose based Features (1406.1881v2)

Published 7 Jun 2014 in cs.CV

Abstract: Holistic methods based on dense trajectories are currently the de facto standard for recognition of human activities in video. Whether holistic representations will sustain or will be superseded by higher level video encoding in terms of body pose and motion is the subject of an ongoing debate. In this paper we aim to clarify the underlying factors responsible for good performance of holistic and pose-based representations. To that end we build on our recent dataset leveraging the existing taxonomy of human activities. This dataset includes 24,920 video snippets covering 410 human activities in total. Our analysis reveals that holistic and pose-based methods are highly complementary, and their performance varies significantly depending on the activity. We find that holistic methods are mostly affected by the number and speed of trajectories, whereas pose-based methods are mostly influenced by viewpoint of the person. We observe striking performance differences across activities: for certain activities results with pose-based features are more than twice as accurate compared to holistic features, and vice versa. The best performing approach in our comparison is based on the combination of holistic and pose-based approaches, which again underlines their complementarity.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.