Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Approximation Algorithms for Model-Based Compressive Sensing (1406.1579v3)

Published 6 Jun 2014 in cs.IT, cs.DS, and math.IT

Abstract: Compressive Sensing (CS) stipulates that a sparse signal can be recovered from a small number of linear measurements, and that this recovery can be performed efficiently in polynomial time. The framework of model-based compressive sensing (model-CS) leverages additional structure in the signal and prescribes new recovery schemes that can reduce the number of measurements even further. However, model-CS requires an algorithm that solves the model-projection problem: given a query signal, produce the signal in the model that is also closest to the query signal. Often, this optimization can be computationally very expensive. Moreover, an approximation algorithm is not sufficient for this optimization task. As a result, the model-projection problem poses a fundamental obstacle for extending model-CS to many interesting models. In this paper, we introduce a new framework that we call approximation-tolerant model-based compressive sensing. This framework includes a range of algorithms for sparse recovery that require only approximate solutions for the model-projection problem. In essence, our work removes the aforementioned obstacle to model-based compressive sensing, thereby extending the applicability of model-CS to a much wider class of models. We instantiate this new framework for the Constrained Earth Mover Distance (CEMD) model, which is particularly useful for signal ensembles where the positions of the nonzero coefficients do not change significantly as a function of spatial (or temporal) location. We develop novel approximation algorithms for both the maximization and the minimization versions of the model-projection problem via graph optimization techniques. Leveraging these algorithms into our framework results in a nearly sample-optimal sparse recovery scheme for the CEMD model.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube