Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A self-organizing system for urban traffic control based on predictive interval microscopic model (1406.1128v1)

Published 4 Jun 2014 in cs.AI and cs.SY

Abstract: This paper introduces a self-organizing traffic signal system for an urban road network. The key elements of this system are agents that control traffic signals at intersections. Each agent uses an interval microscopic traffic model to predict effects of its possible control actions in a short time horizon. The executed control action is selected on the basis of predicted delay intervals. Since the prediction results are represented by intervals, the agents can recognize and suspend those control actions, whose positive effect on the performance of traffic control is uncertain. Evaluation of the proposed traffic control system was performed in a simulation environment. The simulation experiments have shown that the proposed approach results in an improved performance, particularly for non-uniform traffic streams.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.