Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Buyer to Seller Recommendation under Constraints (1406.0455v3)

Published 2 Jun 2014 in cs.SI, cs.GT, q-fin.GN, and q-fin.ST

Abstract: The majority of recommender systems are designed to recommend items (such as movies and products) to users. We focus on the problem of recommending buyers to sellers which comes with new challenges: (1) constraints on the number of recommendations buyers are part of before they become overwhelmed, (2) constraints on the number of recommendations sellers receive within their budget, and (3) constraints on the set of buyers that sellers want to receive (e.g., no more than two people from the same household). We propose the following critical problems of recommending buyers to sellers: Constrained Recommendation (C-REC) capturing the first two challenges, and Conflict-Aware Constrained Recommendation (CAC-REC) capturing all three challenges at the same time. We show that C-REC can be modeled using linear programming and can be efficiently solved using modern solvers. On the other hand, we show that CAC-REC is NP-hard. We propose two approximate algorithms to solve CAC-REC and show that they achieve close to optimal solutions via comprehensive experiments using real-world datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Cheng Chen (263 papers)
  2. Lan Zheng (1 paper)
  3. Venkatesh Srinivasan (21 papers)
  4. Alex Thomo (12 papers)
  5. Kui Wu (57 papers)
  6. Anthony Sukow (1 paper)

Summary

We haven't generated a summary for this paper yet.