Fundamental Tensor Operations for Large-Scale Data Analysis in Tensor Train Formats (1405.7786v2)
Abstract: We discuss extended definitions of linear and multilinear operations such as Kronecker, Hadamard, and contracted products, and establish links between them for tensor calculus. Then we introduce effective low-rank tensor approximation techniques including Candecomp/Parafac (CP), Tucker, and tensor train (TT) decompositions with a number of mathematical and graphical representations. We also provide a brief review of mathematical properties of the TT decomposition as a low-rank approximation technique. With the aim of breaking the curse-of-dimensionality in large-scale numerical analysis, we describe basic operations on large-scale vectors, matrices, and high-order tensors represented by TT decomposition. The proposed representations can be used for describing numerical methods based on TT decomposition for solving large-scale optimization problems such as systems of linear equations and symmetric eigenvalue problems.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.