Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fundamental Tensor Operations for Large-Scale Data Analysis in Tensor Train Formats (1405.7786v2)

Published 30 May 2014 in math.NA and cs.ET

Abstract: We discuss extended definitions of linear and multilinear operations such as Kronecker, Hadamard, and contracted products, and establish links between them for tensor calculus. Then we introduce effective low-rank tensor approximation techniques including Candecomp/Parafac (CP), Tucker, and tensor train (TT) decompositions with a number of mathematical and graphical representations. We also provide a brief review of mathematical properties of the TT decomposition as a low-rank approximation technique. With the aim of breaking the curse-of-dimensionality in large-scale numerical analysis, we describe basic operations on large-scale vectors, matrices, and high-order tensors represented by TT decomposition. The proposed representations can be used for describing numerical methods based on TT decomposition for solving large-scale optimization problems such as systems of linear equations and symmetric eigenvalue problems.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.