Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

An HMM Based Named Entity Recognition System for Indian Languages: The JU System at ICON 2013 (1405.7397v1)

Published 28 May 2014 in cs.CL

Abstract: This paper reports about our work in the ICON 2013 NLP TOOLS CONTEST on Named Entity Recognition. We submitted runs for Bengali, English, Hindi, Marathi, Punjabi, Tamil and Telugu. A statistical HMM (Hidden Markov Models) based model has been used to implement our system. The system has been trained and tested on the NLP TOOLS CONTEST: ICON 2013 datasets. Our system obtains F-measures of 0.8599, 0.7704, 0.7520, 0.4289, 0.5455, 0.4466, and 0.4003 for Bengali, English, Hindi, Marathi, Punjabi, Tamil and Telugu respectively.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.