Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Agnostic Learning of Disjunctions on Symmetric Distributions (1405.6791v2)

Published 27 May 2014 in cs.LG, cs.CC, and cs.DS

Abstract: We consider the problem of approximating and learning disjunctions (or equivalently, conjunctions) on symmetric distributions over ${0,1}n$. Symmetric distributions are distributions whose PDF is invariant under any permutation of the variables. We give a simple proof that for every symmetric distribution $\mathcal{D}$, there exists a set of $n{O(\log{(1/\epsilon)})}$ functions $\mathcal{S}$, such that for every disjunction $c$, there is function $p$, expressible as a linear combination of functions in $\mathcal{S}$, such that $p$ $\epsilon$-approximates $c$ in $\ell_1$ distance on $\mathcal{D}$ or $\mathbf{E}_{x \sim \mathcal{D}}[ |c(x)-p(x)|] \leq \epsilon$. This directly gives an agnostic learning algorithm for disjunctions on symmetric distributions that runs in time $n{O( \log{(1/\epsilon)})}$. The best known previous bound is $n{O(1/\epsilon4)}$ and follows from approximation of the more general class of halfspaces (Wimmer, 2010). We also show that there exists a symmetric distribution $\mathcal{D}$, such that the minimum degree of a polynomial that $1/3$-approximates the disjunction of all $n$ variables is $\ell_1$ distance on $\mathcal{D}$ is $\Omega( \sqrt{n})$. Therefore the learning result above cannot be achieved via $\ell_1$-regression with a polynomial basis used in most other agnostic learning algorithms. Our technique also gives a simple proof that for any product distribution $\mathcal{D}$ and every disjunction $c$, there exists a polynomial $p$ of degree $O(\log{(1/\epsilon)})$ such that $p$ $\epsilon$-approximates $c$ in $\ell_1$ distance on $\mathcal{D}$. This was first proved by Blais et al. (2008) via a more involved argument.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.