Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Understanding the spreading power of all nodes in a network: a continuous-time perspective (1405.6707v2)

Published 26 May 2014 in cs.SI, cs.CY, and physics.soc-ph

Abstract: Centrality measures such as the degree, k-shell, or eigenvalue centrality can identify a network's most influential nodes, but are rarely usefully accurate in quantifying the spreading power of the vast majority of nodes which are not highly influential. The spreading power of all network nodes is better explained by considering, from a continuous-time epidemiological perspective, the distribution of the force of infection each node generates. The resulting metric, the \textit{expected force}, accurately quantifies node spreading power under all primary epidemiological models across a wide range of archetypical human contact networks. When node power is low, influence is a function of neighbor degree. As power increases, a node's own degree becomes more important. The strength of this relationship is modulated by network structure, being more pronounced in narrow, dense networks typical of social networking and weakening in broader, looser association networks such as the Internet. The expected force can be computed independently for individual nodes, making it applicable for networks whose adjacency matrix is dynamic, not well specified, or overwhelmingly large.

Citations (81)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)