Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Signed graph embedding: when everybody can sit closer to friends than enemies (1405.5023v1)

Published 20 May 2014 in cs.DM and math.CO

Abstract: Signed graphs are graphs with signed edges. They are commonly used to represent positive and negative relationships in social networks. While balance theory and clusterizable graphs deal with signed graphs to represent social interactions, recent empirical studies have proved that they fail to reflect some current practices in real social networks. In this paper we address the issue of drawing signed graphs and capturing such social interactions. We relax the previous assumptions to define a drawing as a model in which every vertex has to be placed closer to its neighbors connected via a positive edge than its neighbors connected via a negative edge in the resulting space. Based on this definition, we address the problem of deciding whether a given signed graph has a drawing in a given $\ell$-dimensional Euclidean space. We present forbidden patterns for signed graphs that admit the introduced definition of drawing in the Euclidean plane and line. We then focus on the $1$-dimensional case, where we provide a polynomial time algorithm that decides if a given complete signed graph has a drawing, and constructs it when applicable.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.