Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adapted Approach for Fruit Disease Identification using Images (1405.4930v5)

Published 20 May 2014 in cs.CV

Abstract: Diseases in fruit cause devastating problem in economic losses and production in agricultural industry worldwide. In this paper, an adaptive approach for the identification of fruit diseases is proposed and experimentally validated. The image processing based proposed approach is composed of the following main steps; in the first step K-Means clustering technique is used for the defect segmentation, in the second step some state of the art features are extracted from the segmented image, and finally images are classified into one of the classes by using a Multi-class Support Vector Machine. We have considered diseases of apple as a test case and evaluated our approach for three types of apple diseases namely apple scab, apple blotch and apple rot. Our experimental results express that the proposed solution can significantly support accurate detection and automatic identification of fruit diseases. The classification accuracy for the proposed solution is achieved up to 93%.

Citations (124)

Summary

We haven't generated a summary for this paper yet.