Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Reduced Latency List Decoding Algorithm for Polar Codes (1405.4819v2)

Published 19 May 2014 in cs.IT and math.IT

Abstract: Long polar codes can achieve the capacity of arbitrary binary-input discrete memoryless channels under a low complexity successive cancelation (SC) decoding algorithm. But for polar codes with short and moderate code length, the decoding performance of the SC decoding algorithm is inferior. The cyclic redundancy check (CRC) aided successive cancelation list (SCL) decoding algorithm has better error performance than the SC decoding algorithm for short or moderate polar codes. However, the CRC aided SCL (CA-SCL) decoding algorithm still suffer from long decoding latency. In this paper, a reduced latency list decoding (RLLD) algorithm for polar codes is proposed. For the proposed RLLD algorithm, all rate-0 nodes and part of rate-1 nodes are decoded instantly without traversing the corresponding subtree. A list maximum-likelihood decoding (LMLD) algorithm is proposed to decode the maximum likelihood (ML) nodes and the remaining rate-1 nodes. Moreover, a simplified LMLD (SLMLD) algorithm is also proposed to reduce the computational complexity of the LMLD algorithm. Suppose a partial parallel list decoder architecture with list size $L=4$ is used, for an (8192, 4096) polar code, the proposed RLLD algorithm can reduce the number of decoding clock cycles and decoding latency by 6.97 and 6.77 times, respectively.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.