Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Asymptotically Optimal Anomaly Detection via Sequential Testing (1405.4659v2)

Published 19 May 2014 in cs.IT and math.IT

Abstract: Sequential detection of independent anomalous processes among K processes is considered. At each time, only M processes can be observed, and the observations from each chosen process follow two different distributions, depending on whether the process is normal or abnormal. Each anomalous process incurs a cost per unit time until its anomaly is identified and fixed. Switching across processes and state declarations are allowed at all times, while decisions are based on all past observations and actions. The objective is a sequential search strategy that minimizes the total expected cost incurred by all the processes during the detection process under reliability constraints. Low-complexity algorithms are established to achieve asymptotically optimal performance as the error constraints approach zero. Simulation results demonstrate strong performance in the finite regime.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.