Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Approximate Policy Iteration Schemes: A Comparison (1405.2878v1)

Published 12 May 2014 in cs.AI, cs.LG, and stat.ML

Abstract: We consider the infinite-horizon discounted optimal control problem formalized by Markov Decision Processes. We focus on several approximate variations of the Policy Iteration algorithm: Approximate Policy Iteration, Conservative Policy Iteration (CPI), a natural adaptation of the Policy Search by Dynamic Programming algorithm to the infinite-horizon case (PSDP$\infty$), and the recently proposed Non-Stationary Policy iteration (NSPI(m)). For all algorithms, we describe performance bounds, and make a comparison by paying a particular attention to the concentrability constants involved, the number of iterations and the memory required. Our analysis highlights the following points: 1) The performance guarantee of CPI can be arbitrarily better than that of API/API($\alpha$), but this comes at the cost of a relative---exponential in $\frac{1}{\epsilon}$---increase of the number of iterations. 2) PSDP$\infty$ enjoys the best of both worlds: its performance guarantee is similar to that of CPI, but within a number of iterations similar to that of API. 3) Contrary to API that requires a constant memory, the memory needed by CPI and PSDP$_\infty$ is proportional to their number of iterations, which may be problematic when the discount factor $\gamma$ is close to 1 or the approximation error $\epsilon$ is close to $0$; we show that the NSPI(m) algorithm allows to make an overall trade-off between memory and performance. Simulations with these schemes confirm our analysis.

Citations (89)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)