Papers
Topics
Authors
Recent
2000 character limit reached

Mending the Big-Data Missing Information (1405.2512v5)

Published 11 May 2014 in cs.OH

Abstract: Consider a high-dimensional data set, in which for every data-point there is incomplete information. Each object in the data set represents a real entity, which is described by a point in high-dimensional space. We model the lack of information for a given object as an affine subspace in $\mathbb{R}d$ whose dimension $k$ is the number of missing features. Our goal in this study is to find clusters of objects where the main problem is to cope with partial information and high dimension. Assuming the data set is separable, namely, its emergence from clusters that can be modeled as a set of disjoint ball in $\mathbb{R}d$, we suggest a simple data clustering algorithm. Our suggested algorithm use the affine subspaces minimum distance and calculates pair-wise projection of the data achieving poly-logarithmic time complexity. We use probabilistic considerations to prove the algorithm's correctness. These probabilistic results are of independent interest, and can serve to better understand the geometry of high dimensional objects.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.