Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Variational Image Segmentation Model Coupled with Image Restoration Achievements (1405.2128v1)

Published 9 May 2014 in cs.CV and math.NA

Abstract: Image segmentation and image restoration are two important topics in image processing with great achievements. In this paper, we propose a new multiphase segmentation model by combining image restoration and image segmentation models. Utilizing image restoration aspects, the proposed segmentation model can effectively and robustly tackle high noisy images, blurry images, images with missing pixels, and vector-valued images. In particular, one of the most important segmentation models, the piecewise constant Mumford-Shah model, can be extended easily in this way to segment gray and vector-valued images corrupted for example by noise, blur or missing pixels after coupling a new data fidelity term which comes from image restoration topics. It can be solved efficiently using the alternating minimization algorithm, and we prove the convergence of this algorithm with three variables under mild condition. Experiments on many synthetic and real-world images demonstrate that our method gives better segmentation results in comparison to others state-of-the-art segmentation models especially for blurry images and images with missing pixels values.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)