Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Image Resolution and Contrast Enhancement of Satellite Geographical Images with Removal of Noise using Wavelet Transforms (1405.1967v1)

Published 8 May 2014 in cs.CV

Abstract: In this paper the technique for resolution and contrast enhancement of satellite geographical images based on discrete wavelet transform (DWT), stationary wavelet transform (SWT) and singular value decomposition (SVD) has been proposed. In this, the noise is added in the input low resolution and low contrast image. The median filter is used remove noise from the input image. This low resolution, low contrast image without noise is decomposed into four sub-bands by using DWT and SWT. The resolution enhancement technique is based on the interpolation of high frequency components obtained by DWT and input image. SWT is used to enhance input image. DWT is used to decompose an image into four frequency sub bands and these four sub-bands are interpolated using bicubic interpolation technique. All these sub-bands are reconstructed as high resolution image by using inverse DWT (IDWT). To increase the contrast the proposed technique uses DWT and SVD. GHE is used to equalize an image. The equalized image is decomposed into four sub-bands using DWT and new LL sub-band is reconstructed using SVD. All sub-bands are reconstructed using IDWT to generate high resolution and contrast image over conventional techniques. The experimental result shows superiority of the proposed technique over conventional techniques. Key words: Discrete wavelet transform (DWT), General histogram equalization (GHE), Median filter, Singular value decomposition (SVD), Stationary wavelet transform (SWT).

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.