Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Communication Cost of Distributed Statistical Estimation and Dimensionality (1405.1665v2)

Published 7 May 2014 in cs.LG, cs.IT, and math.IT

Abstract: We explore the connection between dimensionality and communication cost in distributed learning problems. Specifically we study the problem of estimating the mean $\vec{\theta}$ of an unknown $d$ dimensional gaussian distribution in the distributed setting. In this problem, the samples from the unknown distribution are distributed among $m$ different machines. The goal is to estimate the mean $\vec{\theta}$ at the optimal minimax rate while communicating as few bits as possible. We show that in this setting, the communication cost scales linearly in the number of dimensions i.e. one needs to deal with different dimensions individually. Applying this result to previous lower bounds for one dimension in the interactive setting \cite{ZDJW13} and to our improved bounds for the simultaneous setting, we prove new lower bounds of $\Omega(md/\log(m))$ and $\Omega(md)$ for the bits of communication needed to achieve the minimax squared loss, in the interactive and simultaneous settings respectively. To complement, we also demonstrate an interactive protocol achieving the minimax squared loss with $O(md)$ bits of communication, which improves upon the simple simultaneous protocol by a logarithmic factor. Given the strong lower bounds in the general setting, we initiate the study of the distributed parameter estimation problems with structured parameters. Specifically, when the parameter is promised to be $s$-sparse, we show a simple thresholding based protocol that achieves the same squared loss while saving a $d/s$ factor of communication. We conjecture that the tradeoff between communication and squared loss demonstrated by this protocol is essentially optimal up to logarithmic factor.

Citations (99)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.