Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Information Nonanticipative Rate Distortion Function and Its Applications (1405.1593v2)

Published 7 May 2014 in cs.IT, cs.SY, math.IT, and math.OC

Abstract: This paper investigates applications of nonanticipative Rate Distortion Function (RDF) in a) zero-delay Joint Source-Channel Coding (JSCC) design based on average and excess distortion probability, b) in bounding the Optimal Performance Theoretically Attainable (OPTA) by noncausal and causal codes, and computing the Rate Loss (RL) of zero-delay and causal codes with respect to noncausal codes. These applications are described using two running examples, the Binary Symmetric Markov Source with parameter p, (BSMS(p)) and the multidimensional partially observed Gaussian-Markov source. For the multidimensional Gaussian-Markov source with square error distortion, the solution of the nonanticipative RDF is derived, its operational meaning using JSCC design via a noisy coding theorem is shown by providing the optimal encoding-decoding scheme over a vector Gaussian channel, and the RL of causal and zero-delay codes with respect to noncausal codes is computed. For the BSMS(p) with Hamming distortion, the solution of the nonanticipative RDF is derived, the RL of causal codes with respect to noncausal codes is computed, and an uncoded noisy coding theorem based on excess distortion probability is shown. The information nonanticipative RDF is shown to be equivalent to the nonanticipatory epsilon-entropy, which corresponds to the classical RDF with an additional causality or nonanticipative condition imposed on the optimal reproduction conditional distribution.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube