Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

NScale: Neighborhood-centric Large-Scale Graph Analytics in the Cloud (1405.1499v3)

Published 7 May 2014 in cs.DB and cs.SI

Abstract: There is an increasing interest in executing complex analyses over large graphs, many of which require processing a large number of multi-hop neighborhoods or subgraphs. Examples include ego network analysis, motif counting, personalized recommendations, and others. These tasks are not well served by existing vertex-centric graph processing frameworks, where user programs are only able to directly access the state of a single vertex. This paper introduces NSCALE, a novel end-to-end graph processing framework that enables the distributed execution of complex subgraph-centric analytics over large-scale graphs in the cloud. NSCALE enables users to write programs at the level of subgraphs rather than at the level of vertices. Unlike most previous graph processing frameworks, which apply the user program to the entire graph, NSCALE allows users to declaratively specify subgraphs of interest. Our framework includes a novel graph extraction and packing (GEP) module that utilizes a cost-based optimizer to partition and pack the subgraphs of interest into memory on as few machines as possible. The distributed execution engine then takes over and runs the user program in parallel, while respecting the scope of the various subgraphs. Our experimental results show orders-of-magnitude improvements in performance and drastic reductions in the cost of analytics compared to vertex-centric approaches.

Citations (70)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube