Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Optimality guarantees for distributed statistical estimation (1405.0782v2)

Published 5 May 2014 in cs.IT, cs.LG, math.IT, math.ST, and stat.TH

Abstract: Large data sets often require performing distributed statistical estimation, with a full data set split across multiple machines and limited communication between machines. To study such scenarios, we define and study some refinements of the classical minimax risk that apply to distributed settings, comparing to the performance of estimators with access to the entire data. Lower bounds on these quantities provide a precise characterization of the minimum amount of communication required to achieve the centralized minimax risk. We study two classes of distributed protocols: one in which machines send messages independently over channels without feedback, and a second allowing for interactive communication, in which a central server broadcasts the messages from a given machine to all other machines. We establish lower bounds for a variety of problems, including location estimation in several families and parameter estimation in different types of regression models. Our results include a novel class of quantitative data-processing inequalities used to characterize the effects of limited communication.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube