Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Structural Group Sparse Representation for Image Compressive Sensing Recovery (1404.7212v1)

Published 29 Apr 2014 in cs.CV

Abstract: Compressive Sensing (CS) theory shows that a signal can be decoded from many fewer measurements than suggested by the Nyquist sampling theory, when the signal is sparse in some domain. Most of conventional CS recovery approaches, however, exploited a set of fixed bases (e.g. DCT, wavelet, contourlet and gradient domain) for the entirety of a signal, which are irrespective of the nonstationarity of natural signals and cannot achieve high enough degree of sparsity, thus resulting in poor rate-distortion performance. In this paper, we propose a new framework for image compressive sensing recovery via structural group sparse representation (SGSR) modeling, which enforces image sparsity and self-similarity simultaneously under a unified framework in an adaptive group domain, thus greatly confining the CS solution space. In addition, an efficient iterative shrinkage/thresholding algorithm based technique is developed to solve the above optimization problem. Experimental results demonstrate that the novel CS recovery strategy achieves significant performance improvements over the current state-of-the-art schemes and exhibits nice convergence.

Citations (80)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.