Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Structural Group Sparse Representation for Image Compressive Sensing Recovery (1404.7212v1)

Published 29 Apr 2014 in cs.CV

Abstract: Compressive Sensing (CS) theory shows that a signal can be decoded from many fewer measurements than suggested by the Nyquist sampling theory, when the signal is sparse in some domain. Most of conventional CS recovery approaches, however, exploited a set of fixed bases (e.g. DCT, wavelet, contourlet and gradient domain) for the entirety of a signal, which are irrespective of the nonstationarity of natural signals and cannot achieve high enough degree of sparsity, thus resulting in poor rate-distortion performance. In this paper, we propose a new framework for image compressive sensing recovery via structural group sparse representation (SGSR) modeling, which enforces image sparsity and self-similarity simultaneously under a unified framework in an adaptive group domain, thus greatly confining the CS solution space. In addition, an efficient iterative shrinkage/thresholding algorithm based technique is developed to solve the above optimization problem. Experimental results demonstrate that the novel CS recovery strategy achieves significant performance improvements over the current state-of-the-art schemes and exhibits nice convergence.

Citations (80)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube