Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bypassing Erdős' Girth Conjecture: Hybrid Stretch and Sourcewise Spanners (1404.6835v1)

Published 27 Apr 2014 in cs.DS

Abstract: An $(\alpha,\beta)$-spanner of an $n$-vertex graph $G=(V,E)$ is a subgraph $H$ of $G$ satisfying that $dist(u, v, H) \leq \alpha \cdot dist(u, v, G)+\beta$ for every pair $(u, v)\in V \times V$, where $dist(u,v,G')$ denotes the distance between $u$ and $v$ in $G' \subseteq G$. It is known that for every integer $k \geq 1$, every graph $G$ has a polynomially constructible $(2k-1,0)$-spanner of size $O(n{1+1/k})$. This size-stretch bound is essentially optimal by the girth conjecture. It is therefore intriguing to ask if one can "bypass" the conjecture by settling for a multiplicative stretch of $2k-1$ only for \emph{neighboring} vertex pairs, while maintaining a strictly \emph{better} multiplicative stretch for the rest of the pairs. We answer this question in the affirmative and introduce the notion of \emph{$k$-hybrid spanners}, in which non neighboring vertex pairs enjoy a \emph{multiplicative} $k$-stretch and the neighboring vertex pairs enjoy a \emph{multiplicative} $(2k-1)$ stretch (hence, tight by the conjecture). We show that for every unweighted $n$-vertex graph $G$ with $m$ edges, there is a (polynomially constructible) $k$-hybrid spanner with $O(k2 \cdot n{1+1/k})$ edges. \indent An alternative natural approach to bypass the girth conjecture is to allow ourself to take care only of a subset of pairs $S \times V$ for a given subset of vertices $S \subseteq V$ referred to here as \emph{sources}. Spanners in which the distances in $S \times V$ are bounded are referred to as \emph{sourcewise spanners}. Several constructions for this variant are provided (e.g., multiplicative sourcewise spanners, additive sourcewise spanners and more).

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)