Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Global and Local Information in Clustering Labeled Block Models (1404.6325v4)

Published 25 Apr 2014 in math.PR and cs.SI

Abstract: The stochastic block model is a classical cluster-exhibiting random graph model that has been widely studied in statistics, physics and computer science. In its simplest form, the model is a random graph with two equal-sized clusters, with intra-cluster edge probability p, and inter-cluster edge probability q. We focus on the sparse case, i.e., p, q = O(1/n), which is practically more relevant and also mathematically more challenging. A conjecture of Decelle, Krzakala, Moore and Zdeborova, based on ideas from statistical physics, predicted a specific threshold for clustering. The negative direction of the conjecture was proved by Mossel, Neeman and Sly (2012), and more recently the positive direction was proven independently by Massoulie and Mossel, Neeman, and Sly. In many real network clustering problems, nodes contain information as well. We study the interplay between node and network information in clustering by studying a labeled block model, where in addition to the edge information, the true cluster labels of a small fraction of the nodes are revealed. In the case of two clusters, we show that below the threshold, a small amount of node information does not affect recovery. On the other hand, we show that for any small amount of information efficient local clustering is achievable as long as the number of clusters is sufficiently large (as a function of the amount of revealed information).

Citations (40)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube