Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Ensemble estimation of multivariate f-divergence (1404.6230v2)

Published 24 Apr 2014 in cs.IT and math.IT

Abstract: f-divergence estimation is an important problem in the fields of information theory, machine learning, and statistics. While several divergence estimators exist, relatively few of their convergence rates are known. We derive the MSE convergence rate for a density plug-in estimator of f-divergence. Then by applying the theory of optimally weighted ensemble estimation, we derive a divergence estimator with a convergence rate of O(1/T) that is simple to implement and performs well in high dimensions. We validate our theoretical results with experiments.

Citations (61)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.