Papers
Topics
Authors
Recent
2000 character limit reached

On the Satisfiability of Quantum Circuits of Small Treewidth (1404.5565v2)

Published 22 Apr 2014 in cs.CC and quant-ph

Abstract: It has been known for almost three decades that many $\mathrm{NP}$-hard optimization problems can be solved in polynomial time when restricted to structures of constant treewidth. In this work we provide the first extension of such results to the quantum setting. We show that given a quantum circuit $C$ with $n$ uninitialized inputs, $\mathit{poly}(n)$ gates, and treewidth $t$, one can compute in time $(\frac{n}{\delta}){\exp(O(t))}$ a classical assignment $y\in {0,1}n$ that maximizes the acceptance probability of $C$ up to a $\delta$ additive factor. In particular, our algorithm runs in polynomial time if $t$ is constant and $1/poly(n) < \delta < 1$. For unrestricted values of $t$, this problem is known to be complete for the complexity class $\mathrm{QCMA}$, a quantum generalization of MA. In contrast, we show that the same problem is $\mathrm{NP}$-complete if $t=O(\log n)$ even when $\delta$ is constant. On the other hand, we show that given a $n$-input quantum circuit $C$ of treewidth $t=O(\log n)$, and a constant $\delta<1/2$, it is $\mathrm{QMA}$-complete to determine whether there exists a quantum state $\mid!\varphi\rangle \in (\mathbb{C}d){\otimes n}$ such that the acceptance probability of $C\mid!\varphi\rangle$ is greater than $1-\delta$, or whether for every such state $\mid!\varphi\rangle$, the acceptance probability of $C\mid!\varphi\rangle$ is less than $\delta$. As a consequence, under the widely believed assumption that $\mathrm{QMA} \neq \mathrm{NP}$, we have that quantum witnesses are strictly more powerful than classical witnesses with respect to Merlin-Arthur protocols in which the verifier is a quantum circuit of logarithmic treewidth.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.