Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The condensation phase transition in random graph coloring (1404.5513v1)

Published 19 Apr 2014 in cs.DM, math.CO, and math.PR

Abstract: Based on a non-rigorous formalism called the "cavity method", physicists have put forward intriguing predictions on phase transitions in discrete structures. One of the most remarkable ones is that in problems such as random $k$-SAT or random graph $k$-coloring, very shortly before the threshold for the existence of solutions there occurs another phase transition called "condensation" [Krzakala et al., PNAS 2007]. The existence of this phase transition appears to be intimately related to the difficulty of proving precise results on, e.g., the $k$-colorability threshold as well as to the performance of message passing algorithms. In random graph $k$-coloring, there is a precise conjecture as to the location of the condensation phase transition in terms of a distributional fixed point problem. In this paper we prove this conjecture for $k$ exceeding a certain constant $k_0$.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.