Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Dynamic and Multi-functional Labeling Schemes (1404.4982v1)

Published 19 Apr 2014 in cs.DS and cs.DC

Abstract: We investigate labeling schemes supporting adjacency, ancestry, sibling, and connectivity queries in forests. In the course of more than 20 years, the existence of $\log n + O(\log \log)$ labeling schemes supporting each of these functions was proven, with the most recent being ancestry [Fraigniaud and Korman, STOC '10]. Several multi-functional labeling schemes also enjoy lower or upper bounds of $\log n + \Omega(\log \log n)$ or $\log n + O(\log \log n)$ respectively. Notably an upper bound of $\log n + 5\log \log n$ for adjacency+siblings and a lower bound of $\log n + \log \log n$ for each of the functions siblings, ancestry, and connectivity [Alstrup et al., SODA '03]. We improve the constants hidden in the $O$-notation. In particular we show a $\log n + 2\log \log n$ lower bound for connectivity+ancestry and connectivity+siblings, as well as an upper bound of $\log n + 3\log \log n + O(\log \log \log n)$ for connectivity+adjacency+siblings by altering existing methods. In the context of dynamic labeling schemes it is known that ancestry requires $\Omega(n)$ bits [Cohen, et al. PODS '02]. In contrast, we show upper and lower bounds on the label size for adjacency, siblings, and connectivity of $2\log n$ bits, and $3 \log n$ to support all three functions. There exist efficient adjacency labeling schemes for planar, bounded treewidth, bounded arboricity and interval graphs. In a dynamic setting, we show a lower bound of $\Omega(n)$ for each of those families.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.