Papers
Topics
Authors
Recent
2000 character limit reached

Kinetic Voronoi Diagrams and Delaunay Triangulations under Polygonal Distance Functions (1404.4851v1)

Published 18 Apr 2014 in cs.CG, cs.DS, and math.MG

Abstract: Let $P$ be a set of $n$ points and $Q$ a convex $k$-gon in ${\mathbb R}2$. We analyze in detail the topological (or discrete) changes in the structure of the Voronoi diagram and the Delaunay triangulation of $P$, under the convex distance function defined by $Q$, as the points of $P$ move along prespecified continuous trajectories. Assuming that each point of $P$ moves along an algebraic trajectory of bounded degree, we establish an upper bound of $O(k4n\lambda_r(n))$ on the number of topological changes experienced by the diagrams throughout the motion; here $\lambda_r(n)$ is the maximum length of an $(n,r)$-Davenport-Schinzel sequence, and $r$ is a constant depending on the algebraic degree of the motion of the points. Finally, we describe an algorithm for efficiently maintaining the above structures, using the kinetic data structure (KDS) framework.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.